How To Install nwchem on Debian 12

Learn how to install nwchem on Debian 12 with this tutorial. nwchem is High-performance computational chemistry software (default MPI)

Introduction

In this tutorial we learn how to install nwchem on Debian 12.

What is nwchem

nwchem is:

NWChem is a computational chemistry program package. It provides methods which are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters.

NWChem can handle:

  • Molecular electronic structure methods using gaussian basis functions for high-accuracy calculations of molecules
  • Pseudopotentials plane-wave electronic structure methods for calculating molecules, liquids, crystals, surfaces, semi-conductors or metals
  • Ab-initio and classical molecular dynamics simulations
  • Mixed quantum-classical simulations
  • Parallel scaling to thousands of processors

Features include:

  • Molecular electronic structure methods, analytic second derivatives:
  • Restricted/unrestricted Hartree-Fock (RHF, UHF)
  • Restricted Density Functional Theory (DFT) using many local, non-local (gradient-corrected) or hybrid (local, non-local, and HF) exchange-correlation potentials
  • Molecular electronic structure methods, analytic gradients:
  • Restricted open-shell Hartree-Fock (ROHF)
  • Unrestricted Density Functional Theory (DFT)
  • Second-order Moeller-Plesset perturbation theory (MP2), using RHF and UHF reference
  • MP2 with resolution of the identity approximation (RI-MP2)
  • Complete active space SCF (CASSCF)
  • Time-Dependent Density Functional Theory (TDDFT)
  • Molecular electronic structure methods, single-point energies:
  • MP2 spin-component scaled approach (SCS-MP2)
  • Coupled cluster singles and doubles, triples or pertubative triples (CCSD, CCSDT, CCSD(T)), with RHF and UHF reference
  • Configuration interaction (CISD, CISDT, and CISDTQ)
  • Second-order approximate coupled-cluster singles doubles (CC2)
  • State-specific multireference coupled cluster methods (MRCC) (Brillouin-Wigner (BW-MRCC) and Mukherjee (Mk-MRCC) approaches)
  • Further molecular electronic structure features:
  • Geometry optimization including transition state searches, constraints and minimum energy paths (via the Nudged Elastic Band (NEB) and Zero Temperature String methods)
  • Vibrational frequencies
  • Equation-of-motion (EOM)-CCSD, EOM-CCSDT, EOM-CCSD(T), CC2, Configuration-Interaction singles (CIS), time-dependent HF (TDHF) and TDDFT, for excited states with RHF, UHF, RDFT, or UDFT reference
  • Solvatisation using the Conductor-like screening model (COSMO) for RHF, ROHF and DFT, including analytical gradients
  • Hybrid calculations using the two- and three-layer ONIOM method
  • Relativistic effects via spin-free and spin-orbit one-electron Douglas-Kroll and zeroth-order regular approximations (ZORA) and one-electron spin-orbit effects for DFT via spin-orbit potentials
  • Pseudopotential plane-wave electronic structure:
  • Pseudopotential Plane-Wave (PSPW), Projector Augmented Wave (PAW) or band structure methods for calculating molecules, liquids, crystals, surfaces, semi-conductors or metals
  • Geometry/unit cell optimization including transition state searches
  • Vibrational frequencies
  • LDA, PBE96, and PBE0 exchange-correlation potentials (restricted and unrestricted)
  • SIC, pert-OEP, Hartree-Fock, and hybrid functionals (restricted and unrestricted)
  • Hamann, Troullier-Martins and Hartwigsen-Goedecker-Hutter norm-conserving pseudopotentials with semicore corrections
  • Wavefunction, density, electrostatic and Wannier plotting
  • Band structure and density of states generation
  • Car-Parrinello ab-initio molecular dynamics (CPMD):
  • Constant energy and constant temperature dynamics
  • Verlet algorithm for integration
  • Geometry constraints in cartesian coordinates
  • Classical molecular dynamics (MD):
  • Single configuration energy evaluation
  • Energy minimization
  • Molecular dynamics simulation
  • Free energy simulation (multistep thermodynamic perturbation (MSTP) or multiconfiguration thermodynamic integration (MCTI) methods with options of single and/or dual topologies, double wide sampling, and separation- shifted scaling)
  • Force fields providing effective pair potentials, first order polarization, self consistent polarization, smooth particle mesh Ewald (SPME), periodic boundary conditions and SHAKE constraints
  • Mixed quantum-classical:
  • Mixed quantum-mechanics and molecular-mechanics (QM/MM) minimizations and molecular dynamics simulations
  • Quantum molecular dynamics simulation by using any of the quantum mechanical methods capable of returning gradients.

This package provides example input scripts and depends on nwchem built for the default MPI implementation for the architecture.

The default MPI is openmpi for most debian systems. OpenMPI has known problems running nwchem over multiple nodes. If you need to compute large molecules using cluster computation, you may want to use the MPICH build provided by nwchem-mpich instead.

There are three methods to install nwchem on Debian 12. We can use apt-get, apt and aptitude. In the following sections we will describe each method. You can choose one of them.

Install nwchem Using apt-get

Update apt database with apt-get using the following command.

sudo apt-get update

After updating apt database, We can install nwchem using apt-get by running the following command:

sudo apt-get -y install nwchem

Install nwchem Using apt

Update apt database with apt using the following command.

sudo apt update

After updating apt database, We can install nwchem using apt by running the following command:

sudo apt -y install nwchem

Install nwchem Using aptitude

If you want to follow this method, you might need to install aptitude first since aptitude is usually not installed by default on Debian. Update apt database with aptitude using the following command.

sudo aptitude update

After updating apt database, We can install nwchem using aptitude by running the following command:

sudo aptitude -y install nwchem

How To Uninstall nwchem on Debian 12

To uninstall only the nwchem package we can use the following command:

sudo apt-get remove nwchem

Uninstall nwchem And Its Dependencies

To uninstall nwchem and its dependencies that are no longer needed by Debian 12, we can use the command below:

sudo apt-get -y autoremove nwchem

Remove nwchem Configurations and Data

To remove nwchem configuration and data from Debian 12 we can use the following command:

sudo apt-get -y purge nwchem

Remove nwchem configuration, data, and all of its dependencies

We can use the following command to remove nwchem configurations, data and all of its dependencies, we can use the following command:

sudo apt-get -y autoremove --purge nwchem

Dependencies

nwchem have the following dependencies:

References

Summary

In this tutorial we learn how to install nwchem package on Debian 12 using different package management tools: apt, apt-get and aptitude.